The role of epigenetic regulation in Alcohol Use Disorders and cooccuring Alcohol Use and mood disorders

> Estelle Barbier, PhD Assistant Professor Linköping University

Linköping University

- 20000-30000 students
- 3500 medical students

Contents

disorders

Definition of drug addiction

Comorbidity between Alcohol use and anxiety disorders

Preclinical data: role of epigenetic modifications on alcohol and anxiety related behaviors

Café Table With Absinthe, Vincent van GoghVan Gogh Museum

Alcohol use disorders are defined by continued alcohol use despite negative psychological, biological behavioral and social consequences (DSM5, ICD 11)

Diagnosis and Statistical Manual (DSM-5) Criteria for a Substance Use Disorder

According to DSM-5, a substance use disorder may be an appropriate diagnosis when at least two of the following characteristics occur within a 12 months period and cause significant impairment or distress:

- • The quantity of the substance used, or the amount of time spent using is often greater than intended;
- Efforts to control use of the substance, recovering from its effects, or attempting to obtain the substance;
- $-\circ$ A strong desire, craving, or urge to use the substance is present;
- • Substance use interferes with major role obligations at work, school, or home;
- Use of the substance continues despite harmful social or interpersonal effects caused or made worse by substance use;
- Participation in social, work, or leisure activities is avoided or reduced due to substance use;
- Substance use occurs in situations where substance use may be physically hazardous;
- O Continued substance use occurs even when the substance is causing physical or psychological problems or making these problems worse;
- Tolerance for the substance develops, including a need for increasing quantities of the substance to achieve int noticeable decrease in effects when using same amount of the substance;
- After heavy or sustained use of a substance, reduction in or abstinence from the substance results in withdrawal symptoms or precipitates resumption of use of the substance or similar substances to relieve or avoid withdrawal symptoms.

Loss of control/Craving

Compulsivity

Tolerance

or a

Prevalence of alcohol use disorders in 2016

- Higher prevalence in high income countries
- Higher prevalence in individuals with low socioeconomic status

Gender discrepancies (northern Europe)

Addiction 5 times more common among men 8.7% males, 1.5% females

Prevalence of Alcohol Use in Sweden

- In recent years, nearly 6% of the Swedish population are estimated to be either dependent on or abuse alcohol.
- On average, nearly 19% of the drivers killed in traffic accidents during the past decade had blood alcohol levels exceeding the legal limit.

CAN: the Swedish council for information on alcohol and other drugs 2017

Alcohol use disorders

- Major cause of health problems and death globally
 - 3.3M net deaths 2012
 - Responsible for 5.1% of the global burden of disease

<u>Global burden of disease</u> = impact of a health problem as measured by financial cost, mortality. It is often quantified as the number of year lost due to disease.

Alcohol use is one of the dominant cause of disease burden from addictive disorders

The 10 most addictive drugs

(DALY): Disability Adjusted Life Years

Degenhardt et al, Lancet 2013

Harm caused by drugs

Evaluation criteria organized by harms to users and harms to others

FDA-Approved medications for treating Alcohol Use Disorder

Per laset.	comprised \$15 mg
Cam	pral
acar	nprosaat
94 satterne	MERCH

	Typical Dose	Comment
	666 mg three times daily	Dose reduction required with renal impairment
	500 mg once daily for 1-2 weeks, then decrease to maintenance dose (range 125-500 once daily)	Not for use in persons actively drinking alcohol; avoid alcohol in other products
	50 mg once daily	Cannot be given to patients taking opioids
	380 mg IM every 4 weeks; administer in gluteal area with 1.5 inch 20-gauge needle	Cannot be given to patients taking opioids

Medications for the treatment of Alcohol Use Disorder

	Original indication	Mechanism of action	Clinical implications
3aclofen	Spasticity	Agonist of GABA-B receptors	Particularly used for high severity dependence; meta-analyses based mostly on sma studies have shown divergent results, but efficacy was robustly replicated in an adequately powered multicentre randomized controlled trial; because it is a direct (orthosteric) agonist at GABA-B receptors, baclofen results in tolerance and a need for dose escalation, in turn associated with a potential for serious adverse events
Gabapentin	Epilepsy or neuropathic pain	Complex molecular mechanisms of action; one major effect is inhibition of $\alpha 2\delta$ -subunit-containing voltage-dependent calcium channels	Gabapentin promoted abstinence and decreased relapse to heavy drinking; it also decreased alcohol-related insomnia, dysphoria, and craving; effects were dose-dependent and most pronounced at the dose of 1800 mg/day
Ondansetron	Nausea and vomiting	5HT ₃ receptor antagonism	Potential for use in early-onset alcohol use disorder; prescriber should consider pharmacogenetics markers in serotonergic genes
Sodium oxybate	Narcolepsy	Unknown mechanism; a metabolite of GABA; interacts with GABA-B receptors, but unknown whether this mediates therapeutic actions in alcohol use disorder	Sodium oxybate was safe and effective in severe alcohol dependence; it has a high abuse liability, and use should be reserved for specialist treatment settings under a Risk Evaluation and Mitigation Strategy
Topiramate	Epilepsy	Complex molecular mechanisms of action; glutamatergic actions are likely to be key in alcohol use disorder treatment; Effectiveness is moderated by a polymorphism at the locus encoding the glutamatergic kainate receptor subunit GRIK1 (also known as GluK1).	Limited to specialist treatment because it needs to be carefully titrated over an extended period of time, and is initially associated with cognitive side-effects, including impairments of working memory
Varenicline	Smoking cessation	Partial agonist of the $\alpha 4\beta 2$ isoform of the nicotinic acetyl choline receptor	Highest effectiveness seen with phosphatidylethanol as outcome, which is a biomarker for short and intermediate heavy alcohol intake; medication should start immediately after detoxification

Table 2: Wave 2 medications for the treatment of alcohol use disorders

Transition to addiction

Vulnerability to Addiction

Comorbidity between Alcohol Use and Anxiety Disorders. Among individuals with comorbid Alcohol Use et psychiatric disorders

35.8 alcohol-dependent men had a co-occurring anxiety disorder.

60.7 alcohol-dependent women had a co-occurring anxiety disorder.

Hypothesis

Both Alcohol Use and Anxiety Disorders are characterized by longterm changes in gene expression.

> Epigenetic modifications may be one of the underlying mechanism.

Epigenetic : Definition

 Heritable and reversible mechanism that regulates gene expression without changing DNA sequence

Nucleosome

Epigenetic: Definition

• Heritable and reversible mechanism that

regulates gene expression without changing DNA

sequence

- → DNA methylation
 → Histone modifications
- \rightarrow non coding RNAs

DNA methylation

- DNA methylation at C5 position of cytosine associated with a guanine: CpG sites.
- CpG Island: genomic region that contain high frequency of CpG sites

DNA methylation: gene expression silencing

DNA methyltransferases

Histone acetylation

Katrina J. Falkenberg & Ricky W. Johnstone

FDA approved drugs that target epigenetic enzymes

Nature Reviews | Drug Discovery

Class	Modifier	Type of epigenetic modification
Prescribed drugs	Valproate	HDAC inhibitor (increases H3 and H4 acetylation)
	Lithium	HDAC inhibitor (increases H3 acetylation and phosphoacetylation)
	Imipramine	Inhibition of HDAC5 (increases histone acetylation of BDNF III and IV promoters)
	Amitriptyline	Inhibition of HDACs, H3 acetylation, and DNA demethylation by the inhibition of DNMT activity
	Fluoxetine	Reverses the stress-induced decreases in H3K9me3 as well as H3 acetylation in dentate gyrus and hippocampus, respectively
	Escitalopram	Reduces the mRNA levels of <i>DNMT1</i> and <i>DNMT3A</i> , and DNA methylation of <i>S100A10</i> gene promoter
	Tranylcypromine (MAOI)	Inhibition of <i>LSD1</i> (lysine-specific demethylase 1 that demethylates H3K4me1, H3K4me2, H3K9me1, and H3K9me2) inducing transcription
	Haloperidol	H3 phosphorylation at serine 10, H3K14 phosphoacetylation
	Clozapine	Increases H3K4me3 and DNA demethylation of <i>RELN</i> and <i>GAD67</i> promoters
	Sulpiride, amisulpiride (and MS-275)	H3K9 and H3K14 acetylation and DNA demethylation of <i>RELN</i> and <i>GAD67</i> promoters
	Lurasidone	Increases HDAC1, HDAC2, and HDAC5 expression

Examples of known epigenetic modifiers with therapeutic implications

Histone modification	tone Direction Affected gene dification of change or histone codes		Morbidity		
Acetylation	A	HDAC1	Schizophrenia		
		HDAC2, HDAC5	MDD (phase)		
		HDAC4	Depressive phase of bipolar disorder		
	•	HDAC6, HDAC8	Depressive and remission phase of bipolar disorder		
Methylation	A	H3K9me2	Schizophrenia		
	•	H3K4me of GAD1 promoter	Schizophrenia		
DNA modification	Direction of change	Affected gene	Morbidity		
DNA methylation	A	RELN, SOX10	Schizophrenia		
	A	WDR18	Schizophrenia (male)		
	A	GABAA	Suicide		
	A	NR3C1	Child abuse		
	A	DAT1, HERP	Alcoholism		
	•	Atrial natriuretic peptide	Alcoholism		
		5-HTT	MDD		
		HTR2A	Schizophrenia and bipolar disorder		
		DAT1, DRD2	Anorexia nervosa		
		PER1, CRY1, SORBS3, S100A2	Alzheimer disease		
	•	MB-COMT	Schizophrenia and bipolar disorder		
	•	RPL39	Bipolar disorder (females)		
	•	Genome-wide DNA	Autism		
	•	Genome-wide DNA	Schizophrenia		
	•	PPIEL	Bipolar II		
	•	MAOA	Smoking (tobacco)		
RNA modification	Direction of expression change	Affected miRNA	Morbidity		
miRNAs	A	miR-15a, miR-15b, miR-195, miR-107, miR-181b; exosomal miR-497, miR-29c	Schizophrenia		

miR-24, miR-26b, miR-

30e, miR-92, miR-346

Circulating miR-134

Schizophrenia and schizoaffective

Manic phase of bipolar disorder

disorder

Epigenetic aberrations reported in psychiatric diseases

HDAC, histone deacetylase; miRNA, microRNA.

.

-

Abdolmaleky et al., 2013

Hypothesis

A translational prospective of our research

• Animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences

How do we model addiction and related behaviours in rats?

Preclinical research on addiction

• Operant self-administration

- Time
- ✓ Drug consumption
- ✓ Motivation
- ✓ Compulsive-like behavior

Model: alcohol post-dependent

Alcohol self-administration

Progressive ratio

Quinine adulteration

ADDICTION: Neuronal Substrates

Chronic intermittent alcohol exposure increases DNA methylation in the mPFC

Barbier et al., J. of Neuroscience 2015

Injection of RG-108 in mPFC decreases alcohol consumption in post-dependent rats

History of alcohol dependence dysregulates expression of epigenetic enzymes

Gene Symbol Epigenetic Class		Target Site or Gene Function	Entrez Id	Probe Id	Fold Change	p-value(%)
Dot1l	Histone Methyltransferase	Н3К79	362831	ENSRNOG0000032546	-2,09	0,03
MII5	Histone Methyltransferase	НЗК4	311968	ENSRNOG0000021614	-1,39	0,03
Prdm2	Histone Methyltransferase	НЗК9	313678	ENSRNOG0000033522	-1,51	0,03
Prmt5	Histone Methyltransferase	H3R8, H4R3, H2A, non-histone targets	364382	ENSRNOG0000012046	1,31	0,05
Kdm6b	Histone Demethylase	H3K27	363630	ENSRNOG0000037613	-2,33	0,03
Phf2	Histone Demethylase	НЗК9	306814	ENSRNOG0000016816	-1,95	0,01
Brpf1	Histone Acetyltransferase	MOZ/MORF complex, H2AK5, H4K12, H3K14	679713	ENSRNOG0000008142	-1,55	0,02
	Histone Acetyltransferase	All core histones, non-histone targets, CREB				
Ep300	Histone Acetylitansierase	binding	170915	ENSRNOG0000000190	-1,33	0,04
Myst3	Histone Acetyltransferase	MOZ/MORF complex, H3 acetylation	306571	ENSRNOG0000025174	-1,77	0,04
Hdac7	Histone Deacetylase	Class IIa HDAC	84582	ENSRNOG0000008308	-2,44	0,02
Tet1	DNA Demethylase	5hmc	309902	ENSRNOG0000000277	-2,06	0,01
Tet3	DNA Demethylase	5hmc	680576	ENSRNOG0000011387	-1,73	0,03
Brd3	Bromodomain Reader	H4K5/8/12/16	362092	ENSRNOG0000007681	-1,48	0,02
Brd4	Bromodomain Reader	H4K5/8/12/16	362844	ENSRNOG0000006770	-1,95	0,01
Trim33	Bromodomain Reader	E3 Ub ligase, H3K9me3, H3K18ac	365894	ENSRNOG0000018946	1,35	0,02
Chd4	Chromodomain Reader	NuRD chromatin remodeling complex	117535	ENSRNOG0000018309	-1,49	0,04
Chd8	Chromodomain Reader	DNA helicase	65027	ENSRNOG0000025011	-1,36	0,02
Dpf2	PhD Domain Reader	Ac histones	361711	ENSRNOG0000020892	-1,53	0,03
Chmp1b	Chromatin Remodeling	ESCRT-II complex	689364	ENSRNOG0000038673	1,41	0,03
Ino80	Chromatin Remodeling	SNF2/SWI2 helicase family	296084	ENSRNOG0000014483	-1,35	0,04
Smarce1	Chromatin Remodeling	SWI/SNF complex	303518	ENSRNOG0000010676	-3,02	0,00
Srcap	Chromatin Remodeling	SWI/SNF complex, H2AZ/H1AZ exchange	361652	ENSRNOG0000018637	-1,69	0,02

PRDM2?

- PRDM2: PR domain containing 2, with ZNF domain.
- The PRDM2 gene has 2 promoters producing the isoforms RIZ1 and RIZ2
- PRDM2 is evolutionarily conserved
- PRDM2/RIZ1: a tumor suppressor that can arrest the cell cycle and induce apoptosis

1706 aa in rat, 1718 in humans

Histone methylation: H3 lysine 9 methylation

Methyl group

DNMT inhibition blocks alcohol-induced *Prdm2* downregulation in the mPFC

PRDM2 is highly expressed in the mPFC

Alcohol exposure decreases the expression of PRDM2 in mPFC of post-dependent rats

 \downarrow Prdm2 mRNA in post-dependent rats

Expression of PRDM2 in the rat mPFC

Expression of PRDM2 in the rat mPFC

Animal models

Post-dependent rats

Prdm2 knock-down

PRDM2 plays a role in the escalation of alcohol intake

PRDM2 plays a role in compulsive alcohol drinking

Reinstatement models

Lever presses

PRDM2 plays a role in stress-induced relapse

Role of PRDM2 in fear memory

Role of PRDM2 in fear memory

Role of PRDM2 in fear expression

Role of PRDM2 in fear expression

PL KD 1 week

PRDM2 KD PL-BLA increases fear expression

Thank you!!!

Collaborators

- Louise Adermark, Göteborg University (Sweden)
- Claes Wahlestedt, Miami University (USA)

Kanat Chanthongdee

